

Oak Ridge National Laboratory Transport Security Research

Secure Hijack, Intrusion, and Exploit Layered Detector (SHIELD)

Vehicle Attack Analysis Framework (VAAF)

Continuous Driver Authentication (Go CSU!)

Fault Anomaly Detection

Samuel C Hollifield | hollifieldsc@ornl.gov

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Problem: Cybersecurity Resilience Varies Wildly by Manufacturer

Best Practice	OEM A	ОЕМ В	OEM C	OEM D
CAN Gateway	✓		√	
CAN Message Authentication			√	
Segmented Networks	✓	\checkmark	\checkmark	
Transparent Vulnerability Handing	✓			
Frequent Security Patching			√	
Whole-Vehicle Security Assessments				

SHIELD: Secure Hijack, Intrusion, and Exploit Layered Detector

 Ensemble intrusion detection system for in-vehicle Controller Area Networks

CAN Intrusion Detection Overview

Attack type

Detector Type

CAN frame injection

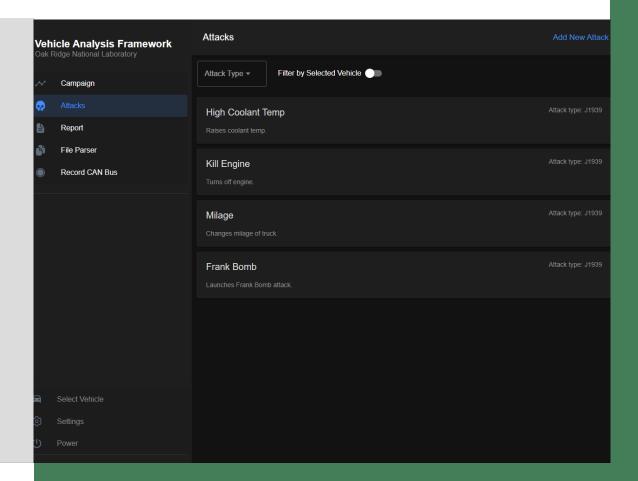
• Me

Message timing anomaly

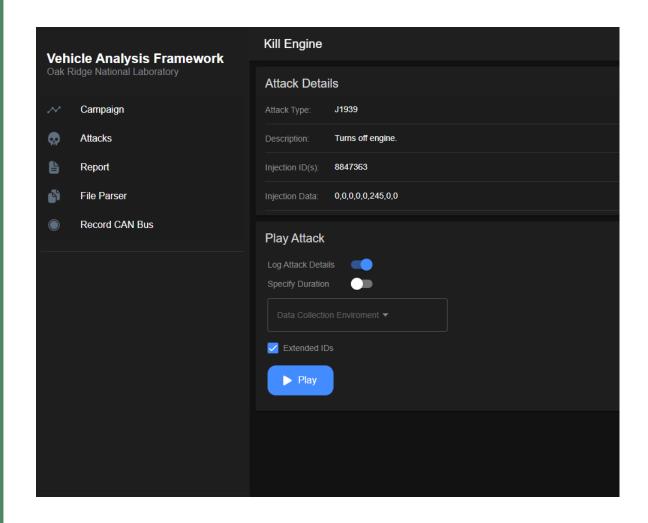
Single-signal manipulation

Single-signal anomaly

Multiple signals manipulated


 Inter-signal relationships broken or changed

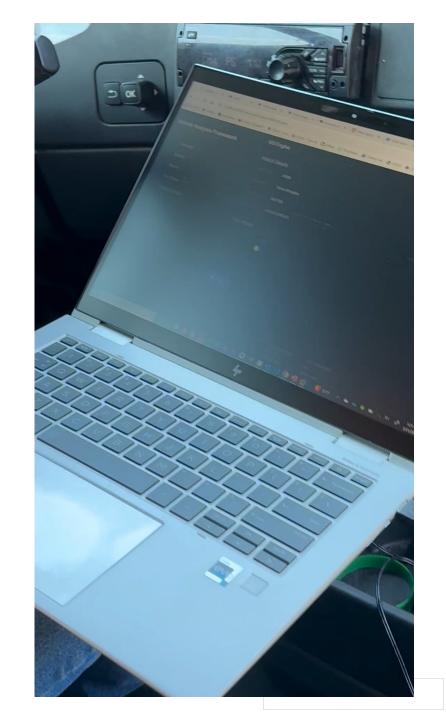
Detector	Single Frame Injection	Multiple Frame Injection	Denial of Service	Suspension	Masquerade	Diagnostic	Other?
Timing / Frequency	√	V	√	√	×	X	?
Arb. ID Inspection	×	X	×	×	×	V	?
Payload Inspection	√	V	√	×	V	X	?



VAAF: Vehicle Attack Analysis Framework

- Allows researchers with no vehicle cyberattack experience to perform attacks and collect data
- Combines numerous test scripts into one framework
- Ability to parse CAN logs into formatted data

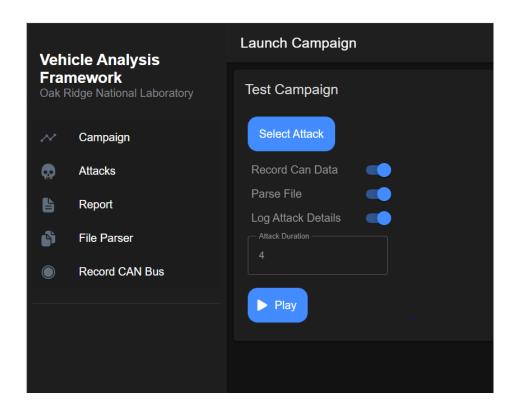
Attack Example


User can:

- View attack details
- Toggle logging
- Specify vehicle environment
- Play for a specific duration or play and stop as desired

VAAF Demo

- Attack Kill Engine
- Disable engine with a single click
- Injecting "Electric Ignition Off" message


Current VAAF Functionality

- Easy to use WebUI and API
- Launch Attacks
- Record CAN traffic
- Build research reports
- Parse CAN data

VAAF Looking Forward

- Campaigns
 - Create custom attack sequences
 - Record CAN through session
 - Formatted report generation of session
- Vehicle Grading
 - Test multiple categories of attacks
 - Give an overall vehicle security score

Continuous Driver Authentication (DriverID)

- Continuous driver authentication from vehicle sensor data in heavy-duty commercial vehicles
- Detection of high-risk driving states and behaviors from vehicle sensor data and/or physiological sensor data

Key Takeaway

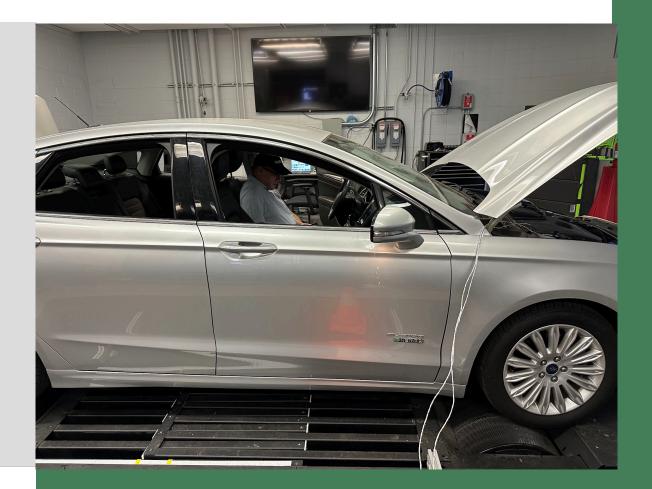
Everyone has a unique style of driving, and modern vehicles capture enough data to identify us while we're driving based on that driving style.

The **DriverID** dataset is being collected in partnership with a research team at CSU.

Study Design

- 50 drivers
- Controlled and 'in-the-wild' driving segments
 - During controlled segment, cyber attacks are launched on the truck to induce driver stress
- Primary deliverables:
 - J1939 logs
 - VBOX logs
 - GPS
 - IMU (pitch, yaw, roll)
- Additional Data Sources:
 - Heart Rate Monitor
 - Stress and Anxiety Questionnaires

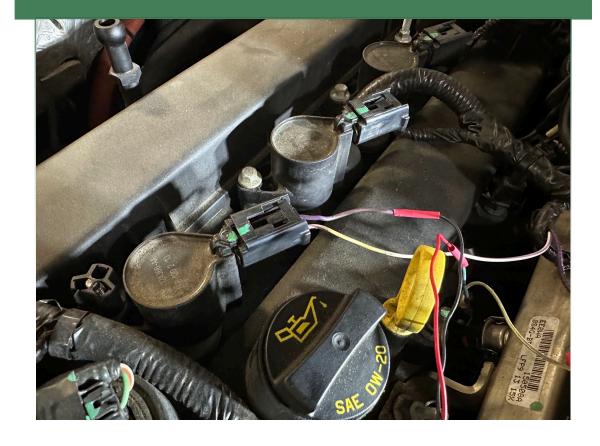
2014 Class 6 Kenworth T270



Separating Faults from Foes

 Segregating legitimate faults from cyberattack

PI: Pablo Moriano | moriano@ornl.gov



Collecting Intermittent Fault Data

Raspberry Pi with 4-Channel Relay

Fuel Injector Connected to Relay

Experiment Example

Acknowledgements

CANalytics Team: Bobby Bridges, Miki Verma, Sam Hollifield, Mike Iannacone, Stacy Prowell, Bill Kay, Jordan Sosnowski, Deborah Wilkerson, Zach Tyree, Krystof Palewec, Frank Combs, Michael Moore, Michael Starr, Joel Asiamah, Katherine Caudill, Max Boozer, Isaac Sikkema, Mike Huettel, Luke Lambert, Lili Swann, Mahim Mathur, Nathan Keough, Nell Barber, Olivera Kotevska

Programmatic Help: Mason Rice, Shaun Gleason, Ken Martin, Shannon Morgan, Matt Garrett, Tom Karnowski, Dan Vacar, Liz Neunsinger

Questions?

Sam Hollifield, hollifieldsc@ornl.gov, https://0xSam.com

Questions?

